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Abstract
Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty
over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published
studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA
concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in
organic milk, by an estimated 7 (95% CI −1, 15)% and 56 (95% CI 38, 74)%, respectively. Concentrations of α-linolenic acid (ALA), very

Abbreviations: AA, arachidonic acid; ALA, α-linolenic acid; BS, basket studies; CLA, conjugated linoleic acid; EFSA, European Food Safety Authority.
EX, controlled experiments; FA, fatty acid; LA, linoleic acid; MPD, mean percentage difference; RDA, redundancy analysis; SMD, standardised mean difference;
UM, unweighted meta-analysis; VA, vaccenic acid; VLC, very long chain; WM, weighted meta-analysis.
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long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95% CI 53,
84)%, 57 (95% CI 27, 87)% and 41 (95% CI 14, 68)%, respectively. As there were no significant differences in total n-6 PUFA and linoleic
acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95% CI −122, −20)% and
93 (95% CI −116, −70)%. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-
analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis
of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the
main reason for milk composition differences.

Key words: Organic products: Milk: Dairy products: Vitamins: Antioxidants: n-3 PUFA: Conjugated linoleic acid

The demand for organic dairy products has increased rapidly over
the past 20 years(1). Dairy products currently account for 15% of
the total organic food market in the USA and up to 30% in some
European countries(2,3). A main driver for the increase in demand
has been the consumer perception that organic milk and dairy
products typically contain higher concentrations of nutritionally
desirable compounds, therefore making them ‘healthier’(4,5). There
is also concern among consumers about pesticide residues in
milk(6–8), although regulatory bodies in Europe maintain that there
is no risk from pesticide residues in food(9). However, there is still
considerable uncertainty over whether, and to what extent, the
use of organic production standards results in significant changes
in the nutritional quality of milk and dairy products(5,10–12).
Over the past 20 years, a large number of scientific studies

have compared concentrations of nutritionally relevant
compounds in milk from organic and conventional dairy pro-
duction systems. Most of them focused on comparing milk fat
composition, but there are also some published data on anti-
oxidant, vitamin and/or mineral concentrations in milk and
dairy products(10,13,14). There has been a particular interest in
comparing concentrations of nutritionally relevant, SFA, MUFA
and PUFA. It is well documented that SFA and in particular
myristic acid (14 : 0) and palmitic acid (16 : 0), and possibly
also lauric acid (12 : 0), affect the relative proportions of HDL-
and LDL-cholesterol and increase the risk of CVD in humans(15).
SFA in milk are therefore widely considered to have negative
effects on human health(15), although this is not universally
accepted(16–18). In contrast, the PUFA linoleic acid (LA) and
α-linolenic acid (ALA), EPA, DPA and DHA have been shown to
induce protective effects against CVD(19). LA is known to reduce
LDL production and enhance its clearance, whereas EPA and
DHA reduce arrhythmia, blood pressure, platelet sensitivity,
inflammation and serum TAG levels(19).
Increased intakes of very long-chain (VLC) n-3 PUFA (EPA+

DPA+DHA) have also been linked to other health benefits,
including improved fetal brain development and function,
delayed decline in cognitive function in elderly men and reduced
risk of dementia (especially Alzheimer’s disease)(20).
The PUFA conjugated linoleic acid (CLA) has been linked to

anti-obesity, anti-carcinogenic, anti-atherogenic, anti-hypertension,
anti-adipogenic and anti-diabetogenic effects, as well as improved
immune system function and bone formation. However, most
evidence for potential positive health impacts of CLA is from
in vitro or animal studies, and there is considerable controversy
over whether, and to what extent, increasing CLA intake will result
in health benefits in humans(21–25).
Three previous systematic literature reviews(10,13,14) used

meta-analyses methods to synthesise published information on

composition differences between organic and conventional
milk and/or dairy products, but report contrasting results and
conclusions (see the online Supplementary data for a detailed
description and discussion of the results of previous
meta-analyses). As a result, they contributed substantially to the
existing uncertainty about the impact of organic production
methods on the nutritional composition of milk and dairy
products. All three systematic reviews/meta-analyses were
based on only a small proportion (<20%) of the information
published to date, limiting the statistical power of the meta-
analyses, especially for parameters in which the number of data
sets available was relatively small(26). Results from two recent
large milk quality surveys from the European Union and
USA(27,28) indicated that there is significant regional variation in
the relative differences in fatty acid (FA) composition between
organic and conventional milk, which may also reduce the
statistical power of meta-analyses.

There has also been a recent qualitative literature review(29)

that discussed composition differences between organic and
conventional milk reported in selected studies in the context of
experiments focused on identifying the effect of management
practices on milk composition.

Although meta-analyses of published comparative studies
may quantify potential composition differences between
organic and conventional dairy products, they cannot identify
the contribution of specific agronomic drivers – for example
animal diet, breed choice and other management parameters –
used in organic and conventional livestock production. This is
mainly because in most comparative studies the management
practices used in both organic and conventional production
systems are described in insufficient detail(30,27). However, for
the dairy sector, there are now five publications reporting data
from a large cross-European milk quality survey in which
bovine milk composition parameters and management prac-
tices, including breeds used, feeding regimens and milking
systems, were recorded using common methods(27,30–34). This
unique data set allows, for the first time, the main agronomic
drivers for differences in milk composition between organic and
conventional farming systems to be investigated by redundancy
analysis (RDA).

Therefore, the main objectives of the present study were to
(1) carry out a systematic literature review of all available stu-
dies published before March 2014 that focused on quantifying
composition differences between organic and conventional
milk and dairy products; (2) conduct weighted and unweighted
meta-analyses (WM and UM) of the published data; (3) carry
out sensitivity analyses focused on identifying to what extent
meta-analysis results are affected by data extraction (e.g. using
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data reported for different years/seasons as separate events or
means of data from different years/seasons) or inclusion criteria
(e.g. including or excluding comparisons involving milk
composition data from non-standard conventional or organic
systems; excluding data from the 20% of studies with the least
precise treatment effects, those having the largest variances
identified in WM); and (4) perform redundancy and correlation
analyses using data from a large cross-European farm
survey(27,30–34) of dairy cow management, milk yield and
quality parameters to identify management parameters asso-
ciated with differences in composition between organic and
conventional milk and associations between productivity and
milk quality in organic and conventional dairy systems.

Methods

Data acquisition: literature search strategy and inclusion
criteria

The review methods were described in detail in a previously
published meta-analysis by Barański et al.(35), which assessed
composition differences between organic and conventional

crops. Relevant publications were identified through an initial
search of literature in the Web of Knowledge, Scopus, Ovid and
EBSCO databases using the search terms (organic* or ecologic*
or biodynamic*) and (conventional* or integrated) and
(livestock or dairy or milk or cheese or cream or curd or butter
or yoghurt) (Fig. 1).

Papers in all languages, published in peer-reviewed and non-
peer-reviewed journals reporting data on both desirable and
undesirable compositional parameters, were considered relevant
for inclusion in the meta-analyses. The search was restricted to
the period between 1992 (the year when legally binding organic
farming regulations were first introduced in the European Union)
and the end of the project in March 2014 and provided 15 164
references. An additional thirty-one publications were found by
studying lists of references or directly contacting authors of
published papers and reviews identified in the initial literature
search (Fig. 1). This included suitable data from scientific papers
published before 1992 that were identified/used in previous
systematic literature reviews/meta-analyses(10,14).

The abstracts of all publications were then examined by two
reviewers to determine whether they contained original data on
milk or dairy products (appropriate population) obtained by

Initial search* (n 15 195)
Web of Knowledge database (years 1992–2014)
Scopus database (years 1992–2014)
Ovid database (years 1992–2014)
EBSCO database (years 1992–2014)
List of references and direct contact with the authors (years 1977–2014) (n 31)

Excluded (n 14 754)
Publications did not present data on milk or dairy
products (appropriate population) or comparison between
organic and conventional system (appropriate comparators).

Suitable publications reviewed   (n 440)

Excluded (n 244)
Publications did not report suitable data sets or contained
the same data as other studies

Papers with data on
bovine milk used in
standard weighted
meta-analysis: papers
did provide information
about number of
replicates and SD or SE

(n 84)

BS
BS/CF
CF
EX

(n 26)
(n 1)
(n 53)
(n 4)

Papers with data on
bovine milk used in
unweighted sensitivity
analysis 1: not all
papers did provide
information about
number of replicates
and SD or SE (n 170)

Papers with data on non-bovine milk
and dairy products used in standard
weighted meta-analysis, unweighted
sensitivity analysis 1 and descriptive
analysis (n 22)
   Sheep milk and dairy products (n 11)
   Goat milk and dairy products    (n 9)
   Buffalo milk and dairy products (n 2)

Papers with data on bovine dairy
products used in descriptive analysis
(n 19)

Papers did meet inclusion criteria   (n 196)
Peer-reviewd journals
Non peer-reviewed journals

BS
BS/CF
CF
EX

(n 40)
(n 2)
(n 113)
(n 18)

(n 1505)
(n 1402)
(n 11 709)
(n 548)

(n 177)
(n 19)

Fig. 1. Summary of the search and selection protocols used to identify papers included in the systematic review and the meta-analyses. * Review carried out by one
reviewer; † data extraction carried out by two reviewers. CF, comparison of matched farms; BS, basket studies; EX, controlled experiments.
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comparing composition parameters in organic and conventional
system (appropriate comparators). This identified 440 suitable
publications, from which 244 were subsequently rejected,
because they did not meet inclusion criteria or reported
duplicated information.
Publications were eligible for inclusion if data for milk yield

and/or at least one composition parameter in milk or dairy
products were reported. As a result, 196 publications (177 peer-
reviewed) were selected for data extraction (170 on bovine milk,
nineteen on bovine dairy products, eleven on sheep milk and
dairy products, nine on goat milk and dairy products, two on
buffalo milk and dairy products). Data from eighty-nine publica-
tions (seventy-nine peer-reviewed) fulfilled the criteria for
inclusion in random-effects WM. Because of the limited data
available for sheep, goat and buffalo milk and dairy products, only
data for bovine milk were included in meta-analyses presented in
the main paper. Results from meta-analyses of pooled data for
goat, sheep and buffalo milk, which was possible for only a small
number of composition parameters, are presented in the
Supplementary Information only (online Supplementary Fig. S35).
Previous systematic reviews/meta-analyses of comparative

studies into milk quality by Dangour et al.(10), Palupi et al.(13)

and Smith-Spangler et al.(14) were based on a more limited
proportion of the literature available (twelve, thirteen and thirty-
seven publications, respectively). However, most publications
included in these previous reviews were also used in the stan-
dard WM reported here, except for one publication on sheep
and goats milk included by Palupi et al.(13) and one publication
on milk included by Dangour et al.(10) that reported the same
data as other publications selected for extraction in this study.
A Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) flow diagram illustrates the search and study
inclusion strategies (Fig. 1). Eligibility assessment was performed
by two independent reviewers, with discrepancies resolved by
consensus and reference to a third reviewer as necessary.

Data extraction

Data were extracted from three types of studies: (1) comparisons
of matched farms (CF), farm surveys in which milk was obtained
from organic and conventional farms in the same country or
region; (2) basket studies (BS), retail product surveys in which
organic and conventional milk was obtained in retail outlets; and
(3) controlled experiments (EX) in which milk was obtained
from experimental animals managed according to organic or
conventional farming standards/protocols. Data from the three
study types were subject to meta-analysis if the authors stated
that (1) organic farms included in farm surveys were using
organic farming methods; (2) organic milk collected in retail
surveys were labelled as organic; or (3) animals from organically
reared herds used in EX were managed according to organic
farming standards, even if animals and land used for ‘organic
treatments’ in experiments were not organically certified.
Several studies compared more than one organic or con-

ventional system or treatment (online Supplementary Table S3).
For example, additional conventional systems/treatments were
described as ‘low input’, ‘intensive’ or ‘extensive’, and an
additional organic system/treatment included in some studies

was described as ‘biodynamic’. In such cases, only the organic
and conventional system identified by the authors as closest to
the typical, contemporary organic/conventional farming system
was used in the meta-analysis, as recommended by Brandt
et al.(11). Full references of the publications and summary
descriptions of studies included in the meta-analyses are given
in the online Supplementary Tables S1–S3.

Information and data were extracted from all selected
publications and compiled in a Microsoft Access database. The
database will be made freely available on the Newcastle
University website (http://research.ncl.ac.uk/nefg/QOF) for use
and scrutiny by others. A list of the information extracted from
publications and recorded in the database is given in the online
Supplementary Table S4.

Data reported as numerical values in the text or tables were
copied directly into the database. Results only published in
graphical form were enlarged, printed, measured (using a ruler)
and then entered into the database, as previously described(35).

Data reported in the same publication for different study types,
countries and outcomes were treated as independent effects.
However, data extracted from the same publication for (1) dif-
ferent years and (2) different regions, retail outlets or brands in
the same country or (3) multiple time points within the same
sampling year were averaged before use in the meta-analyses.

Risk of bias of individual studies was based on (1) study type
and probability of confounding, (2) production system and
magnitude of effect.

Two independent reviewers assessed publications for
eligibility and extracted data. Discrepancies were detected for
approximately 4% of the data, and in these cases extraction was
repeated following discussion.

Raw data from a previously published large cross-European
farm survey(27,30–34) were obtained directly from the authors
and used in both the meta-analyses and RDA; this included
some data sets (e.g. for individual SFA or carotenoids) that were
not previously reported(27,30–34).

Study characteristics, summaries of methods used for
sensitivity analyses and ancillary information are given in the
online Supplementary Tables S2–S7. They include information
on (1) the number of papers from different countries and
publication years used in meta-analyses (online Supplementary
Fig. S1 and S2); (2) study type and locations identified in dif-
ferent studies (online Supplementary Table S2); (3) production
system information for studies with more than two systems
(online Supplementary Table S3); (4) the type of information
extracted from papers (online Supplementary Table S4);
(5) data-handling and inclusion criteria, and meta-analysis
methods used in sensitivity analyses (online Supplementary
Table S5); (6) the list of composition parameters included in
meta-analyses (online Supplementary Table S6); and (7) the list
of composition parameters for which meta-analyses were not
possible (n< 3) (online Supplementary Table S7).

The online Supplementary Table S8 summarises basic statistics
on the number of studies, individual comparisons, organic and
conventional samples sizes, and comparisons showing statistically
or numerically higher concentrations in organic or conventional
milk samples for the composition parameters included in
Fig. 2 and 3.
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Meta-analyses

Nine analyses were undertaken (online Supplementary
Table S5). The methods used for random-effects WM and UM
sensitivity analyses 1 were described by Barański et al.(35) and
compared only pragmatically chosen standard organic and
conventional systems. Fig. 2 and 3 show the pooled effects
obtained using random-effects meta-analysis weighted by

inverse variance and a common random-effects variance com-
ponent and unweighted analysis of differences in means. The
WM analysis is the primary analysis, but it is useful to augment
the results with UM (particularly to explore the impact of
including data from the studies that do not report measures of
variance and thus a wider range of studies).

Eight sensitivity analyses were carried out (online Supplemen-
tary Table S5). Four analyses (sensitivity analyses 2, 3, 6 and 7;

MPD*

%  Higher in CONV
–80 –60 –40 –20 0 20

%  Higher in ORG

40 60 80 Parameters
Standard meta-analysis Sensitivity analysis 1
n Heterogeneity n Ln ratio§

Milk yield
SFA
12 : 0 (lauric acid)
14 : 0 (myristic acid)
16 : 0 (palmitic acid)
MUFA
OA (cis -9–18:1)
VA (trans –11–18:1)
PUFA
CLA (total)
CLA9 (cis -9–trans –11–18:2)
CLA10 (trans –10–cis -12–18:2)
n –3 FA
ALA (cis -9,12,15–18:3)
EPA (cis -5,8,11,14,17–20:5)
DPA (cis -7,10,13,16,19–22:5)
DHA (cis -47,10,13,16,19–22:6)
VLC n –3 PUFAII
n –6 FA
LA (cis -9,12–18:2)
AA (cis -5,8,11,14–20:4)
LA:ALA Ratio
n –6:n –3 Ratio
n –3:n –6 Ratio

32
19
11
12
14
19
10
12
19
11
14
3

12
21
8
5
3
–

12
12
5
–
7
5

<0.001
0.477
0.820
0.398
0.142
0.547
0.547
0.001
0.012
0.008
0.001
0.293

<0.001
<0.001
0.001
0.005
0.379

–
0.904
0.080
0.050

–
0.033

<0.001

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

–
Yes
Yes
Yes

–
Yes

Yes (96 %)
(72 %)
(98 %)
(88 %)
(86 %)
(81 %)
(91 %)
(95 %)
(87 %)
(85 %)
(92 %)
(95 %)
(91 %)
(95 %)
(90 %)
(89 %)
(29 %)

(91 %)
(94 %)
(92 %)

(95 %)
Yes (65 %)

81
33
17
18
20
31
16
18
30
19
20
7

20
34
14
8
6
5

20
22
9

19
23
24

4.44
4.60
4.59
4.62
4.57
4.60
4.62
5.01
4.73
4.94
4.87
4.86
5.05
5.16
5.07
4.91
5.26
5.04
4.59
4.56
4.43
3.98
4.11
5.06

<0.001
0.096
0.284
0.172
0.013
0.446
0.290

<0.001
0.001

<0.001
<0.001
0.006

<0.001
<0.001
<0.001
0.003
0.060
0.030
0.354
0.189
0.008

<0.001
<0.001
<0.001

–3.0 –1.5 0.0 1.5 3.0
SMD

–93

194

P P

Fig. 2. Results of the standard meta-analyses and sensitivity analysis 1 for fat composition in cows’ milk. * Numerical values for mean percentage difference (MPD)
and 95% CI are given in the online Supplementary Table S9. † Significantly different between organic samples (ORG) and conventional samples (CONV) (P< 0·05).
‡ Heterogeneity and the I 2 statistic. § Ln ratio= Ln(ORG/CONV×100%). || Calculated based on published fatty acid (FA) composition data. , MPD calculated using
data included in sensitivity analysis 1; , MPD calculated using data included in standard meta-analysis; , standardised mean difference (SMD) from the standard
meta-analysis with 95% CI represented by horizontal bars. n, number of data points included in meta-analyses; OA, oleic acid; VA, vaccenic acid; CLA, conjugated
linoleic acid; ALA, α-linolenic acid; VLC n-3 PUFA, very long-chain n-3 PUFA (EPA+DPA+DHA); LA, linoleic acid; AA, arachidonic acid.

%  Higher in CONV
–80 –60 –40 –20 0 20 40 60 80 Parameters

%  Higher in ORG

MPD*

Standard meta-analysis

n Heterogeneity

Sensitivity analysis 1

n Ln ratio§
�-Tocopherol
Carotenoids
�-Carotene
Lutein
Zeaxanthin
I
Fe
Se
Urea
SCC

9
5
7
3
–
6
8
4
7

20

0.047
0.342
0.791
0.361

–
<0.001
0.034
0.015
0.176
0.537

Yes
Yes
Yes

Yes
No
No

Yes
Yes

(81 %)
(89 %)
(71 %)

Yes (88 %)
–
(65 %)
(0 %)
(0 %)
(70 %)
(96 %)

17
5

14
6
6
7
9
8

11
47

4.70
4.79
4.79
5.10
4.90
4.08
4.74
4.42
4.53
4.66

0.013
0.385
0.047
0.078
0.046
0.008
0.057
0.126
0.085
0.170

104

3.01.50.0–1.5–3.0
SMD

P P

Fig. 3. Results of the standard meta-analyses and sensitivity analysis 1 for antioxidants, minerals, urea and somatic cell count (SCC) in cows’milk. * Numerical values
for mean percentage difference (MPD) and 95% CI are given in the online Supplementary Table S9. † Significantly different between organic samples (ORG) and
conventional samples (CONV) (P< 0·05). ‡ Heterogeneity and the I 2 statistic. § Ln ratio= Ln(ORG/CONV×100%). || Calculated based on published fatty acid
composition data. , MPD calculated using data included in sensitivity analysis 1; , MPD calculated using data included in standard meta-analysis; , standardised
mean difference (SMD) from the standard meta-analysis with 95% CI represented by horizontal bars; n, number of data points included in meta-analyses.
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online Supplementary Table S5) were designed to identify
whether inclusion of data for individual experimental years as
separate data points affected the results of meta-analyses. Four
analyses (sensitivity analysis 4–7; online Supplementary Table S5)
were carried out to identify whether exclusion of data for
comparisons with non-standard organic or conventional systems
affected the results of meta-analyses; in these analyses,
comparative data for all organic and conventional production
systems reported by authors were included (online Supplemen-
tary Table S3). In sensitivity analysis 8 we explored the effect of
excluding 20% of studies with the least precise treatment effects
from the WM. Results of these sensitivity analyses are available
in the appendix on the Newcastle University website (http://
research.ncl.ac.uk/nefg/QOF).
Effect sizes for all WM were based on standardised mean

differences (SMD), as recommended for studies that include data
measuring the same parameters on different scales(36,37).
Both WM and UM were carried out using the R statistical

programming environment (http://www.r-project.org/). WM,
with the SMD as the basic response variable, were conducted
using standard methods and the open-source ‘metafor’ statistical
package(38–41). A detailed description of the methods and cal-
culations is provided in the ‘Additional Methods Description’
published by Barański et al.(35) (available online).
A positive SMD value indicates that mean concentrations of the

observed constituents were greater in the organic milk samples,
whereas a negative SMD indicates that mean concentrations were
higher in conventional (non-organic) samples. The statistical
significance of a reported effect size (i.e. SMDtot) and CI were
estimated based on standard methods(42) using ‘metafor’(38).
The influence of study type (CF, EX, BS) as a potential
moderator was tested using mixed-effect models(43) and
subgroup analyses (online Supplementary Fig. 3–33).
We carried out tests of homogeneity (Q statistics and

I 2 statistics) on all summary effect sizes. Homogeneity was
indicated if I 2 was <25% and the P value for the Q statistics was
>0·010. Funnel plots, Egger tests of funnel plot asymmetry and
fail-safe number tests were used to assess publication bias(44)

(see the online Supplementary Table S13 for further
information).
For the UM, the ratio of organic means:conventional means

(X̅O / X̅C) expressed as a percentage was ln-transformed, and
values were used to determine whether the arithmetic average
of the ln-transformed ratios was significantly greater than ln
(100), using resampling(45). Reported P values were derived
from Fisher’s one-sample randomisation test(46), and a P< 0·05
was considered statistically significant.
For parameters that were calculated based on published

information (total VLC n-3 PUFA, LA:ALA ratio), it was only
possible to carry out UM (Fig. 2), as measures of variance were
not available.
Forest plots were constructed to show pooled SMD and

corresponding 95% CI for all compositional parameters inves-
tigated. Additional forest plots were presented for selected
results to illustrate heterogeneity between individual studies
and study types (see the online Supplementary Fig. 3–33).
The mean percentage difference (MPD) was calculated for all

parameters for which statistically significant effects were

detected by either UM or WM. This was done to facilitate
value judgements regarding the biological importance of the
relative effect magnitudes using the calculations described by
Barański et al.(35).

We also calculated MPD using data-pairs included in the UM
and WM, to estimate the impact of excluding data, for which
no measures of variance were reported, on the magnitude of
difference. As the MPD can be expressed as ‘% higher’ in
conventional or organic milk, they provide estimates for the
magnitude of composition differences that are easier to relate to
existing information on potential health impacts of changing dietary
intakes for individual or groups of compounds than the SMD values.
The 95% CI for MPD were estimated using a standard method(42).

An overall assessment of the strength of evidence was made
using an adaptation of the Grading of Recommendation
Assessment, Development and Evaluation (GRADE)(47) system
(Table 1).

Estimation of n-3 fatty acid and conjugated linoleic acid
intakes

FA intakes were calculated using the following formula: total fat
intake from milk×proportion of specific FA (n-3 PUFA, ALA,
EPA, DHA, CLA) in total milk FA× 0·933 (the proportion of FA
in total milk lipids)(48). To estimate the effect of switching from
conventional to organic milk/dairy products, estimated dietary
intakes of ALA and EPA+DHA from dairy products were
compared with European Food Safety Authority (EFSA)
recommended intakes of 1100 and 250mg/d, respectively(49).
EFSA recommendations for ALA intake, given relative to total
energy intake, were transformed into mg/d, assuming average
dietary energy intakes of 8·4MJ/d (2000 kcal/d)(50) and FA
energy content of 37·7 kJ/g (9 kcal/g)(51).

Redundancy analyses

The relationships between feeding/management practices and
breed index (proportion of Holstein Friesian cows in the herd)
and the nutritional composition of milk were investigated using
published data from extensive cross-European dairy farm and
milk quality surveys(27,30–34). RDA were carried out using the
CANOCO statistical package(52). The importance of individual
factors (breed index, feed composition parameters and milking
system) was assessed using automatic forward selection within
RDA, with no interaction terms, using Monte Carlo permutation
tests (9999 permutations for each randomisation test). Organic
and conventional production practices were included as passive
drivers in the RDA carried out to produce the bi-plot in Fig. 5.

A number of conventional farms included in the cross-
European farm and milk quality survey used low-input (low
concentrate, high-grazing-based forage intake) feeding regi-
mens that conform to organic production standards. We
therefore carried out a separate RDA in which high- and low-
input conventional and organic production practice were used
as separate drivers, to test whether associations between milk
composition, and organic and low-input, and conventional
feeding practices were similar (online Supplementary Fig. S34).
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Results

Characteristics of studies/data included in meta-analyses

Analyses were based on data from 196 publications reporting
results from farm surveys (127 papers), EX (twenty-two papers),
BS (fifty-one papers) or results from more than one type of
study (EX, CF and/or BS) (online Supplementary Table S2).
Approximately 76% of studies included in meta-analyses

were from Europe, mainly from Germany, Sweden, Denmark,
UK, Italy and Norway, with most of the balance coming from
the USA and Brazil (online Supplementary Table S2 and
Fig. S2). A total of 187 studies reported composition data on
fresh milk, whereas a smaller number of papers reported data
for cheese (thirteen papers), yoghurt (four papers), fermented
milk (three papers), curd (one paper) and butter (four papers)

(online Supplementary Table S2). Only studies reporting data
on fresh milk were included in meta-analyses.

Publications reported data on 418 different composition para-
meters in fresh milk and dairy products, of which 120 were inclu-
ded in meta-analyses (online Supplementary Tables S6 and S7).

Studies were universally judged to be at high/unclear risk of
bias as a result of poor reporting. Insufficient detail was provided
to assess probability of confounding as a source of heterogeneity
(online Supplementary Table S2). The impact of the production
system on the effect magnitude was ascertained where data were
available using RDA (Fig. 5), but insufficient detail was reported
in the majority of individual studies resulting in high/unclear risk
of bias. However, country and production system did explain
heterogeneity in meta-regressions, which may be related to risk
of bias (Fig. 4). Overall risk of bias was considered high, but this

Table 1. Grading of Recommendation Assessment, Development and Evaluation (GRADE) assessment of the strength of evidence for standard
meta-analysis for parameters shown in Fig. 2 and 3
(Standardised mean difference values (SMD) and 95% confidence intervals)

Parameters SMD 95% CI Effect magnitude* Inconsistency† Precision‡ Publication bias§ Overall reliability||

Milk yield −1·23 −1·64, −0·81 Large Medium High No High
SFA −0·17 −0·66, 0·31 Small Medium High Strong Low

12 : 0 (lauric acid) 0·18 −1·39, 1·75 Small High Poor Medium Very low
14 : 0 (myristic acid) 0·32 −0·42, 1·05 Small High Moderate Medium Very low
16 : 0 (palmitic acid) −0·50 −1·17, 0·17 Moderate Medium Moderate Strong Low

MUFA 0·18 −0·4, 0·76 Small Medium Moderate Strong Very low
OA (cis-9-18 : 1) 0·28 −0·64, 1·2 Small Low Poor Medium Low
VA (trans-11-18 : 1) 2·48 1·08, 3·87 Large Medium Moderate Medium Moderate

PUFA 0·88 0·19, 1·56 Large Medium Moderate No Moderate
CLA (total) 1·40 0·37, 2·42 Large Medium Moderate Medium Moderate

CLA9 (cis-9-trans-11-18 : 2) 1·22 0·5, 1·95 Large Low Moderate Medium Moderate
CLA10 (trans-10-cis-12-18 : 2) 1·20 −1·03, 3·43 Large Medium Poor Medium Low

n-3 FA 2·18 1·11, 3·25 Large Low Moderate Medium Moderate
ALA (cis-9,12,15-18 : 3) 3·05 2·08, 4·02 Large Medium High Medium Moderate
EPA (cis-5,8,11,14,17-20 : 5) 1·31 0·56, 2·06 Large Medium Moderate Medium Moderate
DPA (cis-7,10,13,16,19-22 : 5) 1·24 0·37, 2·12 Large Low Moderate Medium Moderate
DHA (cis-4,7,10,13,16,19-22 : 6) 0·21 −0·26, 0·68 Small Low High No Moderate

VLC n-3 PUFA¶ – – – – – – –

n-6 FA −0·06 −0·97, 0·86 Small High Moderate Medium Very low
LA (cis-9,12-18 : 2) −0·92 −1·96, 0·11 Moderate Medium Poor Medium Low
AA (cis-5,8,11,14-20 : 4) −0·98 −1·95, 0 Moderate Medium Poor Strong Very low

LA:ALA ratio¶ – – – – – – –

n-6:n-3 Ratio −2·26 −4·34, −0·18 Large High Poor Medium Low
n-3:n-6 Ratio 1·50 0·81, 2·19 Large Low Moderate Medium Moderate
α-Tocopherol 0·74 0·01, 1·47 Moderate Medium Moderate Medium Low
Carotenoids 0·69 −0·73, 2·1 Moderate High Poor No Low

β-Carotene 0·08 −0·51, 0·67 Small Low Moderate No Moderate
Lutein 0·85 −0·98, 2·68 Large Medium Poor No Moderate
Zeaxanthin – – – – – – –

I −1·20 −1·8, −0·59 Large Low Moderate No High
Fe 0·37 0·03, 0·71 Moderate Low High No High
Se −0·49 −0·89, −0·1 Moderate Low High Medium Moderate
Urea −0·42 −1·04, 0·19 Moderate Low Moderate No Moderate
SCC 0·20 −0·43, 0·82 Small Medium Moderate Medium Low

OA, oleic acid; VA, vaccenic acid; CLA, conjugated linoleic acid; FA, fatty acids; ALA, α-linolenic acid; VLC n-3 PUFA, very long-chain n-3 PUFA (EPA+DPA+DHA); LA, linoleic
acid; AA, arachidonic acid.

* Study quality was considered low because of high risks of bias and potential for confounding. However, we considered large effects to mitigate this sensu GRADE; large effects
were defined as >20%, moderate effects 10–20 and small <10%.

† Inconsistency was based on the measure of heterogeneity and consistency of effect direction sensu GRADE.
‡ Precision was based on the width of the pooled effect CI and the extent of overlap in substantive interpretation of effect magnitude sensu GRADE.
§ Publication bias was assessed using visual inspection of funnel plots, the Egger tests, two tests of fail-safe n, and trim and fill (see the online Supplementary Table 13). Overall

publication bias was considered high when indicated by two or more methods, moderate when indicated by one method and low when no methods suggested publication bias.
|| Overall quality of evidence was then assessed across domains as in standard GRADE appraisal; high when there was very high confidence that the true effects lie close to that of

estimate, moderate when there was moderate confidence in effect estimate and the true effect is likely to be close to the estimate but there is a possibility that it is substantially
different, low when the confidence in the effect estimate was limited and the true effect may be substantially different from the estimate, very low when there was very little
confidence in the effect estimate and the true effect is likely to be substantially different from the estimate.

¶ Calculated based on published fatty acid composition data.
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was mitigated by large effect magnitudes for fourteen of
thirty-one outcomes (Table 1).

Milk yield per cow

WM showed that the average milk yield (kg milk/cow per d or
kg milk/lactation) was significantly lower in organic (−23; 95%
CI −31, −15%) compared with conventional production systems
(Fig. 2; online Supplementary Table S9 and Fig. S3). However,
no significant effect of production system was detected for the
fat and protein content of milk. Total milk protein and fat yield
per cow were therefore also estimated to be approximately
20% lower for organic herds (online Supplementary Table S11).

Composition of organic and conventional bovine milk

Fatty acid composition. For FA composition, a substantial
evidence base (number of comparisons) was available and for
most nutritionally relevant parameters more than ten com-
parative data-pairs were available for WM. The main exceptions
were CLA (trans-10-cis-12-18 : 2), the VLC n-3 PUFA (EPA+
DPA+DHA) and arachidonic acid (AA) for which less than
eight data-pairs were available for WM (Fig. 2).
WM showed that organic and conventional milk had similar

concentrations of total SFA and MUFA, but detected
significantly higher concentrations of total PUFA in organic milk
with an MPD of 7·3 (95% CI −0·7, 15)%.
Among the PUFA, the largest differences were found for n-3

PUFA. WM detected significantly higher concentrations of total
n-3 PUFA, ALA, EPA and DPA, in organic compared with
conventional milk (Fig. 2). The MPD was 56 (95% CI 38, 74)%
for total n-3 PUFA, 68 (95% CI 53, 84)% for ALA, 67 (95% CI 32,
102)% for EPA, 45 (95% CI 18, 71)% for DPA and 21 (95% CI −3,
47)% for DHA (Fig. 2; online Supplementary Table S9).
WM also detected significantly higher total CLA (all CLA

isomers) and CLA9 (cis-9,trans-11-18 : 2; the dominant CLA
isomer found in milk) and vaccenic acid (VA, a MUFA
metabolised to CLA9 by mammals, including humans) in organic
milk (Fig. 2). The MPD were 41 (95% CI 14, 68)% for total CLA,
24 (95% CI 8, 39)% for CLA9 and 66 (95% CI 20, 112)% for VA
(Fig. 2; online Supplementary Table S9).
In contrast, no significant differences in the concentration of

total n-6 PUFA and LA (the dominant n-6 FA found in milk) were
found between organic and conventional milk (Fig. 2). However,
WM detected significantly lower concentrations of the n-6 PUFA
AA (another n-6 FA) in organic milk (Fig. 2). The LA:ALA and
n-6:n-3 PUFA ratios were therefore significantly lower in organic
compared with conventional milk (Fig. 2).
The LA:ALA ratio was 2·8 (95% CI 2·0, 3·6)% in organic and 5·0

(95% CI 1·1, 23·1)% in conventional milk and the n-6:n-3 ratio
was 3·6 (95% CI 1·9, 5·2)% in organic and 5·4 (95% CI 3·4, 7·4)%
in conventional milk (Fig. 2; online Supplementary Table S9).
UM (sensitivity analysis 1 carried out to assess the impact of

including data from a larger number of studies) gave very
similar results to WM (Fig. 2). UM was also carried out for total
VLC n-3 PUFA (EPA+DPA+DHA) and detected significantly
higher concentrations in organic milk with an MPD of 57
(95% CI 27, 87)%.

For a range of specific SFA, MUFA and PUFA and other FA
groups, WM did not detect significant differences, and this inclu-
ded 4 : 0 (butyric acid), 6 : 0 (caproic acid), 10 : 0 (capric acid),
13 : 0 (tridecylic acid), 18 : 0 (stearic acid), 12 : 0+ 14 : 0+ 16 : 0
(unsaturated fatty acids), 18 : 1, 18 : 2, 18 : 3, 10 : 1 (4-cis-decenoic
acid), 12 : 1 (lauroleic acid), 14 : 1 (myristoleic acid), 16 : 1
(palmitoleic acid), 17 : 1 (heptadecenoic acid), cis-11-18 : 1
(cis-VA), cis-12-18 : 1, cis-13-18 : 1, trans-9-18 : 1 (elaidic acid),
trans-12-18 : 1, trans-6-8-18 : 1, CLA (trans-7,9-18 : 2), CLA (trans-
9,11-18 : 2), CLA (trans-11,13-18 : 2), CLA (trans-12,14-18 : 2), cis-
11,14-20 : 2, eicosatrienoic acid (cis-11,14,17-20 : 3), long-chain FA,
medium-chain FA and SCFA (online Supplementary Table S12).

Results of the unweighted sensitivity analysis 1 (UM) were
broadly similar, but UM also detected significantly lower 16 : 0 and
AA concentrations, significantly higher CLA (trans-10-cis-12-18 : 2)
and total VLC n-3 PUFA (EPA+DPA+DHA) and a lower LA:ALA
ratio in organic milk (Fig. 2).

Antioxidants/vitamins and minerals. The available evidence
base for antioxidants/vitamins and minerals was smaller than
for FA composition. With the exception of α-tocopherol,
β-carotene, I and Fe (for which nine, seven, six and eight
data-pairs were available for WM, respectively), the number of
data-pairs available for WM was five or less (Fig. 3).

WM detected slightly, but significantly, higher α-tocopherol
and Fe concentrations, but lower I and Se concentrations in
organic compared with conventional milk (Fig. 3). The MPD was
13 (95% CI 1, 26)% for α-tocopherol, 20 (95% CI 0, 41)%
for Fe, −74 (95% CI −115, −33)% for I and −21 (95% CI −49, 6)%
for Se (Fig. 3; online Supplementary Table S9).

Results obtained by UM were broadly similar to those of the
standard WM, but UM did detect significantly higher zeaxanthin
concentrations in organic milk, but did not detect a significant
difference for Fe (Fig. 3).

For a range of other vitamins/antioxidants and minerals, both
WM and UM did not detect significant differences, including
vitamin A, C, D3, vitamin E activity, Ca, Co, Cu, Mg, Mn, Mo, P, K,
Na and Zn, as well as the toxic metals Ca and Pb, but the number
of data-pairs available was low for most of these parameters
(online Supplementary Tables S11 and S12).

Urea and somatic cell counts. For urea and somatic cell
counts (SCC), a more substantial evidence base (seven and
twenty-five data-pairs, respectively) was available for WM
(Fig. 3). No significant differences in urea and SCC between
organic and conventional milk could be detected (Fig. 3).

Composition of organic and conventional sheep, goat and
buffalo milk

There are currently very few published studies that report
comparative yield (n 5) and/or composition data (n 3 or 4) for
sheep, goat and/or buffalo milk. This makes it impossible to
carry out accurate quantitative estimates of composition differ-
ences by meta-analysis. However, for parameters for which
sufficient data (n≥ 3) were available, we carried out WM to test
whether there may be similar trends to those detected for
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bovine milk (online Supplementary Fig. S35). When pooled
data for sheep, goat and buffalo milk were compared by WM,
no significant difference in milk yield per animal, PUFA and VA
concentrations and SCC were detected. However, significantly
higher concentrations of MUFA, CLA9 and ALA, and
significantly lower concentrations of LA in organic milk, were
detected and there was a trend (P= 0·09) towards higher PUFA
concentrations in organic milk.

Effects of country/geographic region, study type and other
sources of variation

Comparison of concentrations of total PUFA, n-3 PUFA and CLA
in organic and conventional bovine milk from different coun-
tries/geographic regions showed considerable variation
between countries (and in some cases also between different
studies from the same country) (Fig. 4).
Heterogeneity was high (I2> 75%) for approximately two-

thirds of bovine milk composition parameters included in WM
(nineteen of the thirty-one parameters shown in Fig. 2 and 3),
with I2 ranging from 98% for lauric acid to 81% for MUFA. On
the other hand, for approximately one-third of composition
parameters (twelve of the thirty-one parameters shown in Fig. 2
and 3), low or moderate heterogeneity was detected with
I2 ranging from 0% for Fe and Se to 72% for SFA (Fig. 2 and 3).
No substantive funnel plot asymmetry was detected for any

parameters shown in Fig. 2 and 3, except for milk yield, palmitic
acid, MUFA and AA, for which strong funnel plot asymmetry
consistent with a publication bias was detected. However, it is
not possible to definitively attribute discrepancies between
large, precise studies and small imprecise studies to publication
bias, which is strongly suspected, rather than detected,

where asymmetry is severe (Table 1; online Supplementary
Table S13).

When meta-analysis results obtained from different study
types (BS, CF, EX) were compared, broadly similar results were
obtained for most composition parameters included in Fig. 2
(online Supplementary Fig. S3–S33). However, differences
between study types were detected for 12 : 0 (lauric acid) and
oleic acid (OA) (online Supplementary Fig. S5 and S9). For
many parameters, there was considerable variation between
results obtained in different countries and in some cases also
different studies carried out in the same country (online
Supplementary Fig. 3–33).

For many parameters, MPD based on all available data pro-
duced values similar to those calculated using only data for
which measures of variance were reported (i.e. those qualify-
ing for WM) (Fig. 2 and 3; online Supplementary Table S9).
However, for DHA, β-carotene and lutein, inclusion criteria had
a large effect on the MPD.

In addition, when the calculated MPD were superimposed
onto SMD (with 95% CI) results at an appropriate scale
(−80 to +80 for MPD and −3 to +3 for SMD), a reasonable
match was observed, with MPD for most constituents
falling within the 95% CI for SMD (Fig. 2 and 3). However,
for some parameters (EPA, DHA, n-3:n-6 ratio and I), MPD
fell outside the 95% CI of SMD and therefore ought to be seen as
less reliable.

For the composition parameters included in Fig. 2 and 3,
sensitivity analyses based on (1) different inclusion criteria/
data-handling methods for UM or WM or (2) exclusion of 20%
of studies with the least precise treatment effects from the WM
produced broadly similar results to the standard meta-analysis
protocols.
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Overall assessment of the strength of evidence using an
adapted GRADE(47) approach highlighted some uncertainties in
the evidence base, but overall strength of evidence of WM
results was high or moderate for seventeen of the thirty-one
parameters shown in Fig. 2 and 3 (Table 1).

Relationship between management and milk composition

The bi-plot derived from the RDA (Fig. 5) shows the
relationships between diet components and the breed index
(proportion on non-Holstein Friesian genetics in the herd), and
the nutritional composition of milk. The horizontal axis 1 of the
bi-plots explained 51% of the variation and the vertical axis 2 a
further 1·1%. Variance in the RDA was explained by the intakes
of concentrate feeds (F= 241, P= 0·002), hay and straw (F= 64,
P= 0·002), maize silage (F= 48, P= 0·002), breed index (F= 14,
P= 0·002), other silages (F= 14, P= 0·002) and grazing-based
fresh forage intake (F= 1, P= 0·280).
RDA results indicated negative associations between con-

centrate, maize silage, other silages and hay and straw intakes
and a number of nutritionally desirable FA (total PUFA, n-3
PUFA, ALA, CLA9) and antioxidants (3R stereoisomers of
α-tocopherol, β-carotene, lutein and zeaxanthin) along axis 1.
These milk composition parameters also showed strong posi-
tive associations with grazing intake (Fig. 5).
In contrast, there were positive associations between con-

centrate, maize silage, other silages and hay and straw intakes,
and SFA, 16 : 0, total n-6 PUFA, LA, 2R stereoisomers of
α-tocopherol and the n-6:n-3 PUFA ratio, along axis 1.

The same milk composition parameters showed negative
associations with grazing intake (Fig. 5).

Associations between the breed index and milk composition
were generally weaker (Fig. 5).

Organic and conventional management were included as
passive drivers in the RDA and aligned with the active drivers
(1) grazing and grass silage intake, or (2) concentrate, maize
and other silages and hay and straw intake, respectively, as well
as associated milk quality parameters (Fig. 5).

A separate RDA was carried out in which data from con-
ventional farms that used high-grazing-based feeding regimens
(which conformed with organic feed regulations) were included
as an additional passive driver (low-input conventional)
(online Supplementary Fig. S34). Organic and low-input
conventional systems are in a very similar position on the
bi-plot, suggesting that they have a very similar impact on milk
composition (Fig. 5).

Discussion

Milk yields in organic and conventional dairy production
systems

The meta-analysis results showing that milk yields per cow
were on average 20% lower in organic compared with
conventional systems confirms results from a previous meta-
analysis(13), which linked lower yields per cow to the use of
high grazing/conserved forage diets used in organic dairy
systems. This confirms previous studies that reported that
grazing-based diets result in lower yield per cow than the
higher-concentrate diets typically used in high-input conven-
tional dairy production(27,30–34,48,53). However, the study of
Palupi et al.(13) also reported higher total fat and protein content
for organic milk, whereas the meta-analysis reported here
found no significant difference in total fat and protein content
between organic and conventional milk.

Composition of milk from organic and conventional dairy
production systems

Fatty acid composition. Results of the meta-analyses reported
here showed that organic milk had a similar total SFA
and MUFA content, but higher concentrations of total PUFA and
n-3 PUFA compared with conventional milk, which is
broadly consistent with results from three previous meta-
analyses(10,13,14).

The findings of higher concentrations of (1) individual n-3
PUFA (ALA, EPA and DPA), (2) VA, (3) CLA9 and higher n-3:n-6
ratios in organic milk in this study are also consistent with
results reported by Palupi et al.(13). Dangour et al.(10) and
Smith-Spangler et al.(14) did not publish meta-analysis results for
individual n-3 PUFA, CLA9 and n-3:n-6 or n-6:n-3 ratios in milk,
but the higher VA concentrations in organic milk were also
confirmed by Smith-Spangler et al.(14).

Palupi et al.(13) also detected significantly lower concentra-
tions of total n-6 PUFA, LA and OA (the main MUFA in milk).
For these parameters, no significant difference was detected in
the meta-analyses reported here.

1.0

–0.6
–1.0 1.0

BI

CO

CONV
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MA
GS ZE

BC

LU
GA

n-3
CLA9

3RVAORG

SA
OAOS2R

MS

n-6

LA

H/S

6:3

PA

Fig. 5. Bi-plot derived from the redundancy analysis showing the relationship
between milk composition parameters (fatty acids ( ) and antioxidants ( ))
and cows’ feeding and rearing parameters (categorical explanatory variables
( , )) and quantitative explanatory variables (→). 6:3, n-3:n-6 Fatty acid ratio;
2R, synthetic isomers of α-tocopherol; 3R, natural isomers of α-tocopherol;
BC, β-carotene; BI, breed index; CLA9, rumenic acid (cis-9,trans-11-18 : 2);
CO, concentrate feeds; CONV, conventional production system; GA, grazing
intake; GS, grass silage; H/S, hay or straw; LA, linoleic acid (cis-9,12-18 : 2);
LU, lutein; LR, lauristic acid (12 : 0); MA, myristic acid (14 : 0); MS, maize silage;
OA, oleic acid (cis-9-18 : 1); ORG, organic production system; OS, other silage;
PA, palmitic acid (16 : 0); SA, stearic acid (18 : 0); VA, vaccenic acid
(trans-11-18 : 1); ZE, zeaxanthin.
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Sensitivity analyses showed that for most of the FA compo-
sition parameters discussed above the method of data synthesis
did not have a large effect on results, in terms of both statistical
significance and the magnitude of difference between organic
and conventional milk. This indicates that there is now a
sufficiently large body of published information on the FA
composition of organic milk to identify substantive differences
across study types and pedo-climatic and agronomic environ-
ments. It also increases confidence in conclusions drawn
regarding potential nutritional impacts of switching from
conventional to organic milk consumption (see also below).
RDA of data from a large cross-European farm and milk

quality survey identified contrasting feeding regimens
(especially the proportion of grazing, concentrate and con-
served forage in the diet) used in organic and conventional
production systems as the main drivers for differences in milk
fat and antioxidant profiles. Most importantly, RDA results
indicate that high fresh forage intakes by grazing animals (as
prescribed by organic farming standards) increase concentra-
tions of nutritionally desirable FA (e.g. PUFA, MUFA, n-3 PUFA,
ALA, cis-9,trans-11-CLA) and antioxidants/vitamins (except for
synthetic 2R stereoisomers of α-tocopherol) in milk, whereas
high concentrate intakes have an opposite effect. Results from
the RDA also indicated that high intakes of concentrate (and to
a lesser extent grass and maize silages) increase concentrations
of total n-6 FA, LA and AA in milk. When included as a passive
driver in the RDA, the alignment of ‘organic management’ with
grazing intake and conserved forage feeding and ‘conventional
management’ with concentrate intake and vitamin supple-
mentation further supports the conclusion that contrasting
feeding regimens are the main reason for the composition
differences between organic and conventional milk.
These results are consistent with the findings of a wide range

of experimental studies that investigated contrasting dairy cow
diets on rumen biohydrogenation and other processes
influencing milk fat composition and demonstrated the benefits
of high-forage diets on milk fat quality (e.g. concentrations
of beneficial PUFA and antioxidants)(53–56). A recent Norwegian
study also showed that management and botanical composition
of grassland significantly affects the n-3 PUFA concentration
in milk from organic but not conventional farms(57). It is
also interesting to note that models to predict milk FA profiles,
based on farming practice, especially feeding regimens,
have recently been developed using data collected in on-farm
surveys(56).
The fat concentrations and FA profiles in milk from small

ruminants (goats and sheep) and buffalo are known to differ
from those of bovine milk(58), and available data for goat, sheep
and buffalo milk were therefore not pooled with data for bovine
milk in meta-analyses. However, when comparative composi-
tion data for milk from small ruminants (sheep and goats) and
buffalo were pooled, it was possible to carry out meta-analyses
for certain fat composition parameters (e.g. total MUFA and
PUFA, VA, CLA9 and LA). Although these showed some com-
position difference (e.g. higher CLA and ALA concentrations in
organic milk) similar to those detected for bovine milk, there
were also some differences (e.g. higher MUFA and lower LA
concentrations in organic milk). Additional and more substantial

comparative studies for non-bovine milk are therefore required
to confirm results, before conclusions can be drawn as to
potential health impacts of switching to organic milk and dairy
products from small ruminants and buffalo.

There were insufficient published comparative data to carry
out robust meta-analysis for FA concentrations in processed
dairy products (e.g. fermented milk, yoghurt, cheese, curd,
butter and whey). However, results in the small number of
studies available showed similar trends to those found for milk
for a range of fat composition parameters including for total n-3
PUFA, VLC n-3 PUFA and CLA9. This is not surprising, as pre-
vious studies suggest that processing has no or only a small
impact on FA profiles in milk(27).

Antioxidant/vitamin and minerals. Results indicated that
organic milk has higher concentrations of α-tocopherol, which
is consistent with the results of the only one previous meta-
analysis comparing α-tocopherol concentrations in bovine
milk(13). A study from the UK in which concentrations of dif-
ferent stereoisomers of α-tocopherol were compared in organic
and conventional milk indicated that this is because of 3R
α-tocopherol (the dominant stereoisomer found in bovine milk)
concentration being higher in organic milk, whereas concentra-
tion of the 2R stereoisomers were similar in organic and con-
ventional milk(30). This is not surprising, as (1) organic farming
standards prescribe high intakes of fresh forage, which is the
main, natural source for α-tocopherol in the dairy diet and nearly
exclusively contains 3R stereoisomers of α-tocopherol; and
(2) 2R stereoisomers are only found in synthetic vitamin E
supplements, which are widely used in conventional dairy pro-
duction, but prohibited under organic farming standards(27,30).
However, it should be pointed out that in some European
countries (e.g. the Nordic countries) organic farmers can obtain
derogations to use synthetic vitamins, especially during the
winter indoor period(13,30). Sensitivity analysis showed that the
method of data synthesis did not have a large effect on results,
in terms of both statistical significance and the magnitude of
difference between organic and conventional milk.

Not surprisingly, RDA identified vitamin supplements as a
strong driver for increased concentration of the 2R stereoisomers
of α-tocopherol in milk, as the synthetic vitamin E in supple-
ments contains a high proportion of the 2R stereoisomers(30). In
contrast, RDA identified fresh forage intake as a strong driver for
concentrations of 3R stereoisomers of α-tocopherol and
carotenoids in milk. The RDA therefore supports the findings of
the meta-analyses, one other review/meta-analysis(13) and a
previous UK study(30), which concluded that higher intake of
natural α-tocopherol and carotenoids from fresh forage in
organic dairy systems more than compensates for synthetic
vitamin supplementation in conventional systems with respect to
vitamin concentrations in milk.

The finding of lower I and Se concentrations in organic milk
are more surprising, as mineral supplementation is permitted
under organic farming standards, if necessary, and is widely used
in both organic and conventional dairy productions, as they
were shown to improve animal health(59,60). There are published
data on the relative use of mineral and I supplements in organic
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and conventional systems. However, the amounts of I supple-
ments used in organic dairy systems is likely to be lower(61)

(P. Melchett, Soil Association, personal communication) than
in conventional farming systems. This is may be due to
(1) organic systems using less concentrate feeds, (2) mineral
supplementation having to be specifically requested by farmers
for organic feeds in many countries (whereas mineral supple-
ments are routinely added to conventional concentrate feeds)
and/or (3) the use of I teat disinfection (which is known to
significantly increase I concentrations in milk(59)) being less
common in organic production. I in milk is known to fluctuate
seasonally(62), reflecting greater supplementation of dairy cows
in winter compared with summer. It is also strongly influenced
by proximity to the sea, as I is deposited from marine evapora-
tion, and can be lost during processing with high-temperature
pasteurisation(59). However, publications reporting comparative
data on I concentrations provide insufficient information on the
location, teat disinfection methods and details of mineral sup-
plements used on farms that produced the milk samples, and it
therefore remains unclear to what extent these factors affected
the results of the meta-analyses. Although the I content of
organic milk was significantly lower, concentrations in both
organic (147μg/l) and conventional (248 μg/l) milk fall within
the range reported in a review of European farm surveys by
Flachowsky et al.(59) which suggested that current I concentra-
tions in milk may be too high in animals receiving high levels of
feed I. For this reason EFSA have proposed a reduction in the
permitted levels of I in dairy cattle feed from 5 to 2mg I/kg
feed(63). However, it should be pointed out that the I require-
ment in pregnant and breast-feeding women is higher (250μg/d)
than in other adults (150 μg/d)(64). As dairy products are a major
source of I, low levels of dairy consumption in these groups is
therefore more likely to result in deficiency with organic dairy
products, especially if I intakes are not increased by other means
(e.g. consumption of fish, shellfish, I-fortified table salt or I
supplements).
Se concentrations in milk reflect the Se intake by lactating

cows, from that naturally occurring in their feed (largely
dependent on soil Se status) and that added as supplements(62).
Although results of the meta-analysis show concentrations of Se
in organic milk to be slightly but significantly lower than
conventional milk, mean values for both fall between levels
reported for milk from USA (considered to have a high Se
status) and Norway (considered to be low in Se)(62). Apart from
mineral supplements, contrasting conditions (Se concentrations,
fertilisation regimens and soil pH) and their impact on Se con-
centrations in forage and concentrate feeds may also
contribute to the difference in Se concentrations between
organic and conventional milk. For example, in Finland, mineral
N fertiliser is supplemented with Se to compensate for the low Se
concentrations in Finnish soils; however, as mineral N fertilisers
are not permitted under organic farming standards, contrasting
fertilisation regimens may at least partially explain differences in
Se content of organic and conventional milk(65).
The finding of marginally higher concentration of Fe in

organic compared with conventional milk is largely incon-
sequential, as milk is widely recognised as a relatively poor
source of dietary Fe(66).

Mineral composition was not determined in the cross-
European dairy management and milk yield and quality
survey used from RDA. It would therefore be important to carry
out mineral composition surveys across regions with different
pedo-climatic conditions and dairy management practices to
identify the main drivers for mineral composition in both organic
and conventional dairy production.

Mineral supplementation standards and guidelines are
currently reviewed by organic sector bodies and certification
organisations; there is an ongoing R&D programme to evaluate
strategies available for raising concentrations of certain minerals
in UK organic milk (especially I and Se) and associate benefits
and risks(67). There are well-established relatively inexpensive
sustainable methods (e.g. increased use of mineral supplement,
use of I teat disinfectants, use of Se-fortified organic fertilisers
or sustainably sourced seaweeds) to increase both I and Se
concentrations, but the main challenge with both minerals is that
both inadequate and excessive supply have negative health
impacts and that the amounts for adequate and excessive supply
are close(59,65) (see also section on ‘Potential nutritional impacts
of composition differences’).

Potential nutritional impacts of composition differences

Dietary n-3 PUFA intakes. Adequate intakes (AI) for PUFA
recommended for adults by the EFSA are 4–8% of energy intake
for LA, 0·5–0·75% of energy intake for ALA and 250–550mg/d
for EPA+DHA(49,68). EFSA also recommended an additional
100–200mg/d DHA intake during pregnancy and lactation(49,68).
Current estimated mean intakes are known to be too high for LA,
match AI recommendations for ALA, but reach less than half the
AI for VLC n-3 PUFA(49,68). North American and European
agencies currently advise consumers to increase fish and espe-
cially oily fish (e.g. salmon and herring) consumption to improve
VLC n-3 PUFA intake and reduce CVD risk(69). Unfortunately,
implementing these recommendation of higher fish consumption
widely across the human population is thought to be impossible,
as most of the world’s fish stocks are already fully or over-
exploited. In addition, concerns about the sustainability/envir-
onmental impacts of fish farming, Hg/dioxin contamination
levels in oil-rich fish in some regions of the world and recent
studies linking very high intakes of oily fish/fish oil supplements
with an increased prostate cancer risk(69–71) cast further doubt on
this approach. It is therefore thought to be essential to develop
additional/complementary dietary approaches to increase long-
chain n-3 FA supply in line with current AI recommendations.

On the basis of the meta-analyses results, concentrations of
VLC n-3 PUFA were estimated to be 58% higher in organic
compared with conventional milk, and a switch from conven-
tional to organic milk and dairy consumption could therefore be
one such complementary dietary approach, especially as recent
studies indicate that processing of milk into high-fat products
such as butter and cheese (which account for a high proportion
of milk fat intake) does not change the fat composition and the
relative difference in n-3 PUFA between organic and conven-
tional dairy products(27,72). For example, consumption of half a
litre of full-fat milk (or equivalent fat intakes with dairy
products) can be estimated to provide 34 and 22% of the actual
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and 16% (39mg) and 11% (25mg) of the recommended daily
VLC n-3 PUFA intake with organic and conventional milk
consumption, respectively.
The estimated additional VLC n-3 PUFA intake with organic

milk does not take into account potential increases in the ALA to
EPA conversion rates associated with the lower LA:ALA ratio
in organic milk/dairy products (discussed below) and the relative
capacity of individuals to convert/elongate ALA into longer-chain
n-3 PUFA(73–75). However, it should be pointed out that there is
still considerable scientific uncertainty about the effect of LA
intake on ALA to VLC n-3 conversion(69,73–80).

Dietary n-6:n-3 and linoleic acid:α-linolenic acid ratios. It
has been suggested that dietary intake of n-6 (especially LA)
relative to n-3 FA is too high in typical Western European
diets(81); estimates for n-6:n-3 PUFA ratios are between 12:1 and
15:1, and for some individuals they are as high as 40:1(49,68,82).
Current recommendations are to achieve an n-6:n-3 ratio
between 4:1 and 1:1(83). Reductions in total n-6 and LA intake
have been suggested because LA is the precursor of the pro-
inflammatory FA AA and stimulates adipogenesis (and thereby
the risk of obesity) to a greater extent than n-3 FA(81). In
addition, excessive LA intakes during pregnancy and the first
years of life have been linked to a range of neurodevelopmental
deficits and abnormalities(84), and there is evidence that high
n-6:n-3 PUFA and LA:ALA ratios in the diet increases the risk of
a range of other chronic diseases including certain cancers,
inflammatory and autoimmune diseases, and CVD(49,68).
However, it is difficult to estimate to what extent the differ-

ences in FA profiles may affect human health, as there are only a
small number of studies in which health impacts of switching
from organic to conventional milk consumption were studied.
One study focused on the effect of organic milk consumption on
eczema in children under 2 years in the Netherlands
(a country with relatively high milk consumption)(85). It reported
that eczema was significantly lower in children from families
consuming organic rather than conventional milk. This may have
been because of the higher n-3 PUFA concentrations and lower
n-6:n-3 PUFA ratio in organic milk, as there is increasing evi-
dence for anti-allergenic effects of n-3 FA(76). For example, a
recent animal study showed that increasing dietary VLC n-3
PUFA intake prevented allergic sensitisation to cows’ milk pro-
tein in mice(77). Two other cohort studies (one in Denmark and
one in Norway) investigated associations between milk/dairy
product consumption during pregnancy and the incidence of
hypospadias, the most common genital birth defect in boys(86,87).
The Danish study found that ‘frequent consumption of high-fat
dairy products (milk, butter) while rarely or never choosing the
organic alternative to these products during pregnancy was
associated with increased odds of hypospadia’(86). The more
recent Norwegian study confirmed these results and reported
that (1) organic food consumption was associated with lower
odds of hypospadia, and (2) the closest associations were found
with organic vegetable and milk/dairy product consumption(87).

Conjugated linoleic acid. Milk and dairy products account for
up to 67% of total dietary CLA intake, as CLA is only found in

ruminant fat(88). Organic milk was found to have 39% higher
concentrations of CLA than conventional milk, but it also had
46% higher concentrations of VA, which is converted to CLA by
human desaturase enzymes. Thus, the potential increase in
CLA supply with organic dairy consumption may be even
higher(31–33,88). CLA has been linked to anti-obesity, anti-dia-
betogenic, anti-carcinogenic and other potential health benefits.
However, most evidence for beneficial health impacts of CLA
consumption is from in vitro and animal studies in which diets
were supplemented with synthetic CLA, and human dietary
intervention studies often did not detect significant effects of
increasing CLA intake(21,22). As a result, there is still controversy
about the exact health impacts of increased CLA intake in
humans and the dose/intake levels required to demonstrate
beneficial effects(22).

A recent meta-analysis of eighteen human studies concluded
that CLA supplementation produces a modest weight loss in
humans, when very high doses of synthetic CLA (approximately
3·2g/d) were used(89). However, it is also important to point out
that most in vitro, and both animal and human dietary inter-
vention, studies were carried out using synthetic CLA, which has a
different CLA isomer balance to the naturally occurring CLA found
in milk(30,31). As CLA isomers differ in their biological activity,
results from animal and human dietary intervention studies based
on synthetic CLA may not reflect the physiological effects of
increasing CLA intake via a switch to organic milk consumption.
For example, anti-obesity effects were mainly linked to CLA10
(trans-10-cis-12-18 : 2), which makes up 50% of synthetic
CLA(21,22). In contrast, CLA in milk is over 80% CLA9 (cis-9-trans-
11-18 : 2), with CLA10 accounting for <10% of total CLA(30,31).

To our knowledge, no animal or human dietary intervention
studies in which the effect of increasing CLA intake via milk and
dairy products with a higher CLA content (e.g. organic milk) have
been carried out, and until such studies have been completed it is
not possible to estimate potential health impacts of increasing
CLA consumption via switching to organic milk consumption.

Antioxidants/vitamins and minerals

Antioxidants/vitamins. Increased dietary intakes of fat-soluble
vitamins/antioxidants such as carotenoids and α-tocopherol are
thought to be nutritionally desirable. Increased antioxidant
intake has been shown to reduce oxidative stress, a known risk
factor in a range of chronic health conditions such as CVD,
certain cancers and reduced immune status(90). However, as
dairy products are not major sources of vitamin E and car-
otenoids in the human diet, it is unlikely that the slightly higher
α-tocopherol concentrations found in organic milk will have a
major health impact in humans.

Iodine. The daily recommended intake for I in UK is 140 µg/d(91).
Milk and dairy products are important dietary sources for I, and
they have been reported to supply 30–60% of intake(59). On the
basis of the results from the meta-analyses, a daily consumption
of half a litre of milk is therefore estimated to provide 53 and 88%
of daily I intake from organic and conventional milk, respectively.
At this level of milk/dairy consumption, both organic and
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conventional products would be expected to provide adequate
but not excessive intakes.
Although there is a focus on overcoming I deficiency in some

countries and sectors of society(92,93), there is also concern that
excessive concentrations of I in milk and dairy products
could result in thyrotoxicosis and other adverse health effects in
both livestock and humans(94–96). This apparent contradiction
arises from a combination of (1) the relatively narrow
margin between dietary I deficiency (<140μg/d) and excess
(>500 μg/d), (2) the wide range in I concentrations found in
milk and (3) variation in milk and dairy consumption. I intakes
from both organic and conventional milk could be excessive in
regions with very high milk and dairy consumption, such
as Finland, Sweden and the Netherlands, where average
daily consumption of milk is close to 1 litre/d(97). A recent review
on I also suggests that the widespread use of I as a teat
disinfectant and high I supplementation of livestock feeds has led
to excessive dietary intakes of I and negative effects on human
health in some regions of the world (e.g. North America)
and highlight recent recommendations to reduce permitted
levels of I supplementation for livestock(59). The lower I levels
from organic production systems could therefore be considered
beneficial and may soon be matched in conventional dairy
production(59).
On the other hand, it has also been suggested that a lower I

content in organic milk could result in deficiency in population
groups with a higher demand of I (e.g. pregnant, nursing
and young women), low dairy consumption and/or insufficient
supply of I from other foods(98,99). However, it may not be
sensible to strive to raise I levels in milk to accommodate
population groups with a high I requirement or low dairy
consumption, as this increases the risk of excessive intakes by
population groups with an average I need and/or high milk
consumption. Adjusting dairy I supplementation and concentra-
tions in milk to meet ‘average’ or ‘slightly below average’ needs
of consumers is thought to be a better strategy, as it (1) reduces
the health risks from excessive supply for consumers with
high dairy intakes and (2) is relatively easy for individuals with
a high I demand and/or low dairy intake to raise their I intake to
satisfactory levels via mineral supplements and/or the use of
I-fortified table salt(94,98,99).

Selenium. Se concentrations in animal feed and foods are
increasingly recognised as being too low in many regions of the
world. Insufficient Se supply was more frequently associated
with livestock rather than human diets and can impair immune
and antioxidant status(62,66). Milk and dairy products are one
source for Se in the human diet(65), and results from the
meta-analysis show lower concentrations of Se in organic
compared with conventional milk. However, switching from
conventional to organic milk/dairy product consumption is
unlikely to have a major effect on Se intake, especially in
regions with low to moderate dairy consumption. On the
basis of UK nutrient requirements(91), it can be estimated that
consumption of half a litre of milk will be equivalent to 11 and
13% of recommended intakes with organic and conventional
milk/dairy products, respectively.

Iron. Different from meat, milk is not a major source of Fe in the
human diet(100). The slightly higher Fe intake with organic milk
is therefore unlikely to have a major nutritional impact.

The need to optimise mineral supply in dairy production
(especially with respect to Se) should be considered in future
revisions of organic farming regulations for mineral supple-
mentation of livestock and fortification of processed foods.

Strength of evidence and exploration of heterogeneity

Risk of bias of individual studies was generally high and not
universally mitigated by large effects. Publication bias was also
strongly suspected for many outcomes. Overall strength of evi-
dence was variable, but was judged as moderate for the primary
outcomes (Table 1). Thus, some uncertainty surrounds the con-
clusions of this work, largely arising from poor reporting in the
primary literature. We also speculate on the widespread problem
of selective reporting, although this was not formally evaluated.

The finding of significant differences between countries/
geographic regions, as well as production systems, is consistent
with previous studies that explained similar findings with
contrasting dairy management regimens being used for organic
and/or conventional systems (e.g. length of outdoor grazing
period, dietary regimens and breed choice/selection) between
countries/regions(27). Differences in dairy management practices
are therefore thought to be a major source of variation. However,
meta-regressions are subject to bias and confounding. Here, addi-
tional variation was likely because of pooling data across experi-
mental approaches (retail surveys, farm surveys and experimental
studies) in the meta-analyses, although there were no substantial
differences in the results obtained with different experimental
approaches. Other confounding factors cannot be discounted.

The need to carry out dietary intervention and cohort studies

Overall, it can be concluded that a switch from intensive
conventional to organic production standards will result in
substantive improvements in milk fat composition, especially in the
supply of nutritionally desirable VLC n-3 PUFA. Potential impacts of
composition differences on human health currently have to be
extrapolated from existing information about the effects of
compounds such as VLC n-3 PUFA, the n-3:n-6 PUFA ratio, CLA,
antioxidants/vitamins and minerals on human health, as there are
virtually no studies in which impacts of organic food consumption
on animal or human health or health-related biomarkers were
assessed. However, the significant differences in nutritionally
relevant compounds identified by the meta-analyses reported here
demonstrate the need to carry out human dietary intervention and
cohort studies designed to quantify the health impact of switching
to milk and dairy products from organic or other ‘low-input’
grazing-based livestock production systems that deliver similar
composition changes.

The argument for more rigorous human intervention studies
to confirm health benefits is supported by recent human cohort
studies, which suggest that a switch to organic milk consump-
tion may reduce the risk of hypospadias in boys(86,87) and
eczema in children under 2 years of age(85). Clearly, additional
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dietary intervention and cohort studies should be carried out to
identify/quantify other potential human health impacts of
switching to organic milk and dairy product consumption.
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